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Inspired by the mechanism of the biological DNA, a DNA based genetic algorithm (DNA-GA) is proposed
to determine the kinetic parameters for the hydrogenation reaction. The considered chemical process
contains five reactions and 25 unknown parameters. The DNA-GA uses the DNA encoding method to
represent the potential parameters and genetic operators inspired from the biological DNA are designed
to find the global optimum. The study on the performance for typical benchmark functions shows that
on-linear optimization problems
NA computing
enetic algorithm
ydrogenation
inetic model

the DNA-GA outperforms the other two methods in both convergence speed and accuracy. Based on
the operating data gathered from an industrial hydrogenation unit, 25 parameters are obtained by the
DNA-GA and the kinetic model for the hydrogenation reaction is established. To verify the validity of the
established model, another four groups of data are used to test the established model and two previously
reported models. The comparison results show that the sum of square relative errors of the model obtained

t of t
arameter estimation by the DNA-GA is the leas
operating data.

. Introduction

As one of the heavy feedstock refinery technology, hydrogena-
ion reaction has become popular in the recent years. Its main
unction is to produce the feedstock meeting the requirement of
he cracking reactions through removing the impurities from the
esidue oil. For the optimization purpose, engineers use kinetic
odels to describe the hydrogenation process. However, mathe-
atical modeling of such complex chemical kinetics usually leads

o non-linear parameter estimation problems, where many deter-
inistic optimization methods suffer from getting trapped in local
inima since such parameter estimation problems often contain
ore than one minimum among which one is the global minimum

nd the others are local optima [1,2].
In this context, genetic algorithm (GA) developed by Holland

s employed in the parameter estimation problems for its global
earching ability [3,4], and the application of GA in various chemical
ngineering disciplines has increased [5–7]. Although GA performs
ell in many problems, it has some limitations, such as weak local-

earch capability and premature convergence [8]. To improve the

erformance of GA, hybrid methods are studied in the recent years,
ut most of them are implemented by predicting the good initial
oints using GA and determining the final optimum with a local-
earch method [9–11]. Since their effectiveness relies on the global
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he test models, and its prediction is in good agreement with the practical
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exploration capability of GA, they would be constrained if GA fails to
predict the potential initial condition of the global optimum. More-
over, the traditional GA uses binary encoding or real encoding, and
neither of them could represent the diverse genetic information
and better imitate the regulation action of genes to the genetic pro-
cesses. As such, some biological operations at the gene level cannot
be effectively adopted in the existing GA [12].

To overcome the drawbacks of GA, a few of the improved GAs
based on the mechanism of the biological DNA have been devel-
oped [12–14]. Tao et al. proposed a RNA genetic algorithm based on
DNA computing to estimate the parameters of chemical engineer-
ing processes [15]. They encoded the chromosomes with nucleotide
bases and modified GA operators with RNA molecular operations.
This method can largely improve the diversity of the population and
the ability to overcome the fraudulence compared with standard GA
(SGA). However, this method sacrifices the rapidity of convergence
to obtain the diversity of the population and it tends to fail in the
high-dimensional optimization problems.

To overcome the above deficiencies, a DNA based GA (DNA-
GA) is proposed. In this algorithm, we encode each individual
with a sequence of nucleotide bases. Then, inspired by the oper-
ations of DNA molecular, we design genetic operators to enhance
the global searching ability of the DNA-GA. Simulation studies on

six benchmark functions, varying from two-dimensional to high
dimensional, show the superiority of the DNA-GA in contrast to
other two algorithms, RNA-GA and GA. Finally, the parameters in
the hydrogenation kinetic models proposed by Xu et al. [16,17] are
estimated by the DNA-GA.

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:nwang@iipc.zju.edu.cn
dx.doi.org/10.1016/j.cej.2009.03.016
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Nomenclature

Cin impurity content of the feedback oil
Cout impurity content of the exported product
E activation energy
Fave average value of the optimization problem
Fmax maximum of the optimization problem
Fmin minimum of the optimization problem
Gave average evolution number of the optimization prob-

lem
Gi the evaluation generation number in ith run
Gmax maximum evolution number of the optimization

problem
Gmin minimum evolution number of the optimization

problem
k0 pre-exponential parameter
l each parameter encoding length
L individual length
N population size
ns number of the sample data
Pc crossover probability
PIA IA operator probability
Pm NM operator probability
Pmm MM operator probability
R molar gas constant 8.314 J/(mol K)
t2 retention time of the catalyst
t1 running time of the unit
T1 catalyst functional activated time
T2 reaction temperature
yp real removal fraction of the Pth group
ŷp model predicted removal fraction of the Pth group

Greek symbols
ˇ catalyst deactivation parameter
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2.2.2.1. Inverse-anticodon operator (IA operator). IA operator is an
� reaction order

. The DNA genetic algorithm

.1. DNA encoding method

In the view of modern biology, DNA is the major genetic mate-
ial for life and encodes plentiful genetic information. Similarly, as
string of binary data is encoded with 0 and 1, DNA is encoded with
ucleotides. Due to their different chemical structure, nucleotides
an be classified into four types of bases: adenine (A), guanine (G),
ytosine (C), and thymine (T). According to Watson–Crick comple-
entary principle, bonding occurs by the pairwise attraction of

ases: A bonds with T and G bonds with C. For example, if sequence
is TTCGC, its complement S’ is AAGCG. The pairs (A, T) and (G,
) are therefore known as complementary base pairs. Through this
omplementary property, a codon specified by a triplet of bases
an be bonded with the specific anticodon consisting of the com-
lementary bases on transfer RNA (tRNA) (where T is replaced by U

n tRNA), and assists subsequent transmission of genetic informa-
ion in the formation of a specific amino acid, as shown in Fig. 1.
18].

Based on the biological DNA structures, we can design a DNA
ncoding method for practical problems. Generally, an n-objective
ptimization problem can be written as follows:
min f (x1, x2, · · ·xn)
xmin i ≤ xi ≤ xmax i, i = 1, · · ·, n

(1)
Fig. 1. Genetic information transmission.

where x is the vector of n decision or control variables, f(x) is the
objective function and [xmini, xmaxi] is the parameter bounds.

In this work, every variable xi of the problem (1) is represented as
a string consisting of a combination of four nucleotide bases, A, G, C,
T. This means we have a four-letter alphabet

∑
{A, G, C, T} to encode

potential solutions. Since such string cannot be possessed by digital
computers, these bases are encoded with digital numbers. Here,
integer 0, 1, 2, and 3 are adopted to encode the bases since they could
represent the characteristics of bases, such as structure, function
group and complementary relationship [19]. And the mapping from
nucleotide bases to the digital integers is 0123/CGAT, which means
that C accords with 0, G with 1, A with 2, and T with 3. Through
inheriting the complementary properties of the nucleotide bases,
the four integers pair as (2, 3) and (0, 1).

Then, every variable xi is represented as an integer string of
length l. The lower limit xmini is represented by the decoded integer
0, and the upper limit xmaxi is represented by the decoded inte-
ger 4l − 1. And the precision of parameter xi is (xmaxi − xmini)/4l. The
length of one individual is L = n × l. Based on this DNA encoding
method, we can introduce features of the biological DNA into the
traditional GAs and develop a new DNA-GA.

2.2. Genetic operators

The correct choice of genetic operators is very important for the
application of GAs. Hence, based on the above encoding method, we
develop the genetic operators in the DNA-GA to enhance the search-
ing ability of GA. They are crossover operator, selection operator and
three mutation operator consisting of inverse-anticodon operator,
maximum-minimum operator, and normal-mutation operator.

2.2.1. Crossover operator
Crossover is an operator that exchanges information between

different chromosomes, which is important for the entire search
process. In crossover operation, a pair of parents can be obtained
by randomly choosing two individuals from the population. Then,
every parent is separated into n parts, and two parts in the same
location of two parents are mated as a pair of sub-parents. Such
separation is convenient for the problems where each variable is
encoded with different length. Afterward, two-point crossover is
adopted over each pair of sub-parents and the crossover points
are set at random. The crossover is adopted with probability Pc.
An example is shown in Fig. 2.

2.2.2. Mutation operators
operator which replaces the codon with its inverse anticodon. First,
the individual is also separated into n parts and some consecu-
tive bases are chosen as a codon in each part. Different from the
codon in biological DNA, the number of the bases in a codon of



X. Chen, N. Wang / Chemical Engineering Journal 150 (2009) 527–535 529

Fig. 2. An example of cr
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Fig. 3. An example of IA operator.

he DNA-GA is not fixed. The number of the bases and the loca-
ion of codon are both assigned randomly. Then, the anticodon
hat consists of the complementary bases is obtained based on the

atson–Crick complementary principle. Afterwards, the order of
he bases in the anticodon is inverted. Finally, the codon is replaced
y its inverse anticodon. For example, in Fig. 3, if the codon is
elected as 112(GGA), its anticodon will be 003(CCT) and its inverse
nticodon is 300(TCC). Then, the bases 112 are replaced with 300.
A operator occurs with the probability PIA.

.2.2.2. Maximum-minimum operator (MM operator). MM operator
an change the chromosome by replacing the frequently used bases
ith the rarely used bases in the current chromosome. Notice that,
M operator is different from IA operator that it does not require

he individual to be separated into several parts. One example of
M operator is shown in Fig. 4. In Fig. 4, it is clear that base G

1) is the most frequently used base in the chromosome, while
ase C (0) is the least frequently used base. Then, MM operator
eplaces every base G with base C. MM operator occurs with the
robabilityPMM.
.2.2.3. Normal-mutation operator (NM operator). Normal-
utation operator is a background operator that produces

pontaneous random changes in the chromosomes. In the DNA-GA,

Fig. 4. An example of MM operator.
ossover operator.

every base in the individual can be replaced by one of another
three bases with the probability Pm. Fig. 5 gives an example of NM
operator where base A is replaced with base G.

2.2.3. Selection operator
Selecting individuals for the next generation is also an impor-

tant process. In this paper, tournament selection is used, in which
two individuals are compared against each other and the one with
higher fitness value advances into the next generation. Note that
elitism is also used in conjunction with tournament selection in
attempt to guarantee the best individual is replicated into the next
generation.

2.3. Procedure of the DNA-GA

Based on the above encoding method and the genetic operators,
the procedure of the DNA-GA can be summarized as follows, seen
in Fig. 6.

Step 1: Initialize a population containing N individuals.
Step 2: Calculate the fitness value of each individual.
Step 3: Select two individuals from the population randomly as the
parents and adopt crossover operator over the parents to generate
new individuals. Repeat this step until N/2 new individuals are
created.
Step 4: Insert all the new individuals generated in step 3 into the
population without deleting old individuals.
Step 5: Adopt three mutation operators orderly over each individ-
ual, and generate 3/2N new individuals.
Step 6: Replace all the original individuals with the new ones pro-
duced in step 5.
Step7: Apply elitism in conjunction with tournament selection to
choose N individuals from the population for advancing into the
next generation.
Step 8: Repeating steps 2–7 until the stop criteria are met, and the
final solution is found.
3. Computational experiments

Generally, the performance of the improved GA should be inves-
tigated through computational experiments. Hence, we select six

Fig. 5. An example of NM operator.
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Table 1
Test functions.

Test functions Optimal solution Optimal value

min f (x) = 1 +
(

(x1 − 100)2 + (x2 − 100)2
)

/4000 − cos(x1 − 100) cos
(

(x2 − 100)/
√

2
)

, xi ∈ [−600, 600] (100, 100) 0

min f (x) = 100(x2 − x2
1)

2 + (1 − x1)2, xi ∈ [−5.12, 5.12] (1, 1) 0

max f (x) =
(

a
b+(x2

1
+x2

2
)

)2

+ (x2
1 + x2

2)
2
, a = 3, b = 0.05, xi ∈ [−5.12, 5.12] (0,0) 3600

min f (x) = 0.5 +
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√
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+x2

2

)2
−0.5[

1+a(x2
1
+x2

2
)
2
]2 , xi ∈ [−10, 10] (0,0) 0

min f (x) = −c1 exp
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D

D∑
i=1

x2
i

⎞
⎠− exp

(
1
D cos(

D∑
i=1

c3xi)

)
+ c1 + exp(1),

xi ∈ [−32.768, 32.768], i = 1 : D, D = 10, c1 = 20, c2 = 0.2, c3 = 2�

(0,0. . .0) 0

min f (x) =
n∑

i=1

x2
i
, n = 10, xi ∈ [−5.12, 5.12]

b
m
d

e
u
l
a

0.1.
Fig. 6. Procedure of the DNA-GA.

enchmark functions reported in the literature to test the perfor-
ance of the DNA-GA compared with RNA-GA [15] and GA. The

etails of the functions are shown in Table 1.
These functions contain different degrees of fraudulence that is
xpected to test the ability of the algorithm to overcome the fraud-
lence. The former four functions are two-dimensional, and the

atter two functions are ten dimensional that are used to test the
lgorithm’s performance in high dimensional problems.
(0,0. . .0) 0

3.1. Parameter specification of the DNA-GA

In the DNA-GA, there are four operator parameters: Pc, Pm, PIA
and PMM. From the description of the operators in Section 2.2, we
can find the former two operators, crossover and NM operator, are
similar to the N-point crossover and bitwise mutation in binary GA.
Hence, the values of Pc, Pm can be decided from references to the
recommended range reported in the previous literatures, which is
[0.6, 1] and [0.001, 0.1] respectively [8,20,21]. Here, we set Pc to be
0.75 and Pm to be 0.001 in this paper. As for the latter two operators,
they are different from any traditional operators in GA. In order
to demonstrate the values of their probabilities and examine their
effect, we adopt the DNA-GA to optimize f4 with various values of
PIA and PMM.

The first group of experiments use fixed probability PIA = 0.5 but
various PMM; the second group use fixed PMM = 0.5 but various PIA.
And the third group are adopted with fixed settings of PIA and PMM:
PMM = PIA = 0 and PMM = PIA = 1. For each parameter setting, the DNA-
GA runs 50 times independently. And the tendency curves of the
average best-so-far objective function values of function f4 are given
in Figs. 7–9.

Figs. 7 and 8 exhibits that the convergence speed is the slow-
est and the algorithm will be trapped into the local optimum when
none of the two new operators works, i.e. PIA = 0 and PMM = 0. If any
of the two operators works, i.e. PIA = 0 or PMM = 0, the convergence
speed of the DNA-GA will be increased. Furthermore, when PIA is
fixed, the increase of PMM will increase the convergence rate of the
algorithm seen in Fig. 7. The same effect is observed in Fig. 8 too.
Fig. 9 shows the comparison of the convergence speed with differ-
ent setting of PIA and PMM. It is obvious that the DNA-GA converges
to the global optimum more quickly when PIA = 0.5 and PMM = 1,
compared with PIA = 1 and PMM = 0.5. Furthermore, the highest con-
vergence rate happens when both operators are employed with
probability 1.

On the other hand, we should notice that the increase of the
operator probabilities could result in an increase of the comput-
ing time. To demonstrate this effect, we list the average CPU time
that the DNA-GA needs to reach the global optimum under differ-
ent parameter settings in Table 2. Here, we assume the algorithm
finds the global optimum when the distance between the best-
so-far individual and the known global minimum is smaller than
As shown in Figs. 7–9, the algorithm can reach the global opti-
mum in the smaller generation with the increase of the operator
probability. However, the data in Table 2 indicate that CPU time
could become larger at the same time. For example, in f4, the CPU
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Fig. 7. Convergence curves of DNA-GA with different setting of Pmm for f4.

t
t
b
a

F

Table 2
computing time under different setting parameters of DNA-GA.

Parameter setting f4 f6

CPU time(s) CPU time(s)

PIA = 1, Pmm = 1 0.39 1.05
P = 0.5, P = 1 0.35 0.97
Fig. 8. Convergence curves of DNA-GA with different setting of PIA for f4.
ime is 0.39 s when PIA = 1 and PMM = 1, which is a little longer than
he time needed when PIA = 0.5 and PMM = 1:0.35 s. It is probably
ecause the larger operator probability requires more time for the
lgorithm to finish the operation of the genetic operators in one

ig. 9. Convergence curves of DNA-GA with different setting of PIA and Pmm for f4.
IA mm

PIA = 1, Pmm = 0.5 0.62 1.61
PIA = 0.5, Pmm = 0.5 0.56 1.51

generation. And this effect is more obvious with the increase of the
number of decision variable or the complexity of the objective func-
tion, like in function f6 that possesses 10 decision variables. Hence,
considering the computing time, we choose the setting of PIA = 0.5
and PMM = 1 in this paper.

From the above discussion, we can conclude that the two novel
operators can increase the convergence speed of the DNA-GA, and
the convergence rate is sensitive to the value of PIA and PMM. How-
ever, like other GAs, the values of Pc, Pm, PIA and PMM are not fixed
for all the problems and they can be adjusted according to different
applications.

3.2. Comparison and discussion

In this subsection, we will compare the performance of three
optimization methods: DNA-GA, RNA-GA and GA. To ensure the
comparison is fair, the population size N and the length of the string
representing each variable l are set uniformly as: N = 60 and l = 20.
The parameters of the test algorithms are set as follows: In RNA-
GA, the three crossover probabilities are set as 0.8,0.5 and 0.5, and
the mutation probability is remained as in [15]; The parameters of
DNA-GA are set as:Pc = 0.75, PIA = 0.5, PMM = 1, and Pm = 0.001;GA is
realized by the GA toolbox of MATLAB.1

All the test algorithms are terminated when the distance
between the objective function value of the best-so-far individ-
ual and that of the known global optimum is smaller than �
or the generation number is up to 1000. Here, we set � to be
0.0001.

For every test function, each algorithm runs R = 50 times. Here,
we use the average evaluation generation number Gave, the maxi-
mum and minimum evaluation number Gmax and Gmin over R runs
to measure the convergence speed of the algorithm, where Gave

computed by Gave = 1
R

R∑
i=1

Gi and Gi is the actual evaluation gen-

eration number in ith run. Obviously, the less Gmax, Gmin and Gave

are, the faster the algorithm is. The corresponding data are shown in
Table 3. The global search ability is measured by, Fmax, Fmin and Fave,
which denotes the maximum, minimum and average optimal value
of the best objective function over R runs, respectively. The corre-
sponding data are shown in Table 4. Then, Suc in Table 5 is employed
to show the reliability of the test algorithm, where Suc = Rsuc/R and
Rsuc is the number of the runs that the distance between the best
solution and the known global optimum is smaller than 0.1 over R
runs. The average CPU time of each algorithm is also presented in
Table 5.
First, we analyze their performance on two-dimensional func-
tions f1–f4. From the values of Suc shown in Table 5, we can find
that GA cannot guarantee to reach the global optimum in these
four test problems. Compared with GA, RNA-GA is more reliable.

1 To get better performance of GA, the setting of GA is different for each test
function: uniform selection, heuristic crossover for f1 and f5, roulette selection and
two-point crossover for f2 and f6, uniform selection and arithmetic crossover for f3
and f4. The mutation is adaptive and the probability of crossover is 0.85.



532 X. Chen, N. Wang / Chemical Engineering Journal 150 (2009) 527–535

Table 3
Comparison of efficiency of three algorithms.

Test function DNA-GA RNA-GA GA

Gmax Gmin Gave Gmax Gmin Gave Gmax Gmin Gave

f1 32 4 14.38 1000 6 389 1000 31 606.4
f2 135 9 47.12 987 8 154.2 1000 11 642.2
f3 75 8 31.08 592 393 542 1000 165 540.52
f4 27 4 13.7 1000 20 559.48 1000 11 623.34
f5 122 19 45.74 1000 1000 1000 1000 582 837.46
f6 32 16 19.4 770 661 695.52 241 136 185.84

Table 4
Comparison of accuracy ability of three algorithms.

Test function DNA -GA RNA-GA GA

Fmax Fmin Fave Fmax Fmin Fave Fmax Fmin Fave

f1 9.07E-05 6.20E-13 1.46E-05 0.0074 2.51E-06 0.0021 0.0271 7.35E-07 0.0056
f2 9.97E-05 1.72E-13 1.97E-05 9.99E-05 2.29E-08 5.13E-05 0.4583 3.38E-05 0.0407
f3 3600 3600 3600 3600 3600 3600 3600 3460.6 1000
f4 9.90E-05 1.84E-13 1.52E-05 0.0097 8.39E-02 0.0045 0.0097 1.42E-06 0.0049
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5 9.83E-05 4.48E-08 3.49E-05 19.2303
6 9.57E-05 5.13E-13 1.67E-05 9.98E-05

ts success rates both reach 100% in f2 and f3, and Suc is largely
mproved in another two functions. However, the improvement of
uccess rate of RNA-GA may increase the computing time in some
roblems. Like in f4, although the success rate of RNA-GA is rising,

ts CPU time is evidently longer than GA. As comparison, the DNA-
A is far more reliable than the other algorithms that it successfully
onverges to the global optimum in each run for all these four func-
ions. Moreover, as shown in Table 5, the computing time of DNA-GA
s much smaller than that of the other two methods. For exam-
le, in f1, the average CPU time is only 0.61 s, which is remarkably
horter than that of RNA-GA and GA, 3.75 s and 5.04 s respectively.
hen, the values of Gave, Gmax and Gmin in Table 3 reflect the con-
ergence speed of the testing algorithm. Obviously, Gave and Gmax

f the DNA-GA are much lower than those of the two others, which
ean the DNA-GA converges to the global optima in the smaller

enerations. The DNA-GA also shows its superiority in the quality
f the optima. Table 4 clearly demonstrates that the DNA-GA finds
ore satisfactory optima than RNA-GA and GA.
Afterwards, the performance of three algorithms on high

imensional functions is discussed. Function f5 and f6 are both 10-
imensional functions. The former is multimodal, and the latter

s unimodal. For f6, the success rates of all three algorithms are
ll 100%. But the RNA-GA is much slower than the other methods
hat the computing time of RNA-GA is 19.97 s while that of DNA-GA

nd GA is 1.21 s and 2.02 s, respectively. This phenomenon becomes
ore obvious in the more complicated test function f5. In f5, RNA-
A cannot find the global optimum in any test run while GA is much
etter that its successful rate is 88%. As comparison, the successful

able 5
omparison of efficiency and reliability ability of three algorithms.

est function DNA-GA RNA-G

CPU time(s) Suc (%) CPU ti

1 0.61 100 3.75
2 1.8 100 3.01
3 1.14 100 4.23
4 0.54 100 6.58
5 3.1 100 26.24
6 1.21 100 19.97
4.5976 71.4085 19.8044 8.54E-05 2.2765
1.09E-05 7.23E-05 9.94E-05 5.16E-05 8.98E-05

rates of DNA-GA are 100% in both functions with less computing
time. Such as in f5, the average computing time of DNA-GA is 3.1 s,
which is less than the half of GA.

To sum up, we can know that the DNA-GA is superior to RNA-
GA and GA both in the convergence speed and the probability to
converge to the global optimum. Moreover, it performs preferable in
high-dimensional functions where RNA-GA failed. Hence, the DNA-
GA is an efficient and reliable optimization method.

4. Parameter estimation for the kinetic hydrogenation
models

4.1. Kinetic models of hydrogenation reactions

There are many published kinetic models for the hydrogenation
reactions in literatures [22–25]. However, most of them have the
following characteristics: they only aim at the removal of single
impurity; the reaction period is calculated by hour; the deacti-
vation of catalyst is not considered. As a result, these models are
not suitable for hydrogenation reactions of an industrial hydro-
genation unit, Maoming’s Residue hydrodesulfurization treatment
unit (S-RHT). In this context, Xu et al. proposed the kinetic models
for hydrogenation reactions based on the operation data gathered
from Maoming’s S-RHT [16–17]. In Xu’s models, the complicated
process is simplified into five independent reactions: desulphur-

ization, denitrification, decarbonization, denickel and devanadium.
And each reaction can be described as follows:

A GA

me(s) Suc (%) CPU time(s) Suc (%)

72 5.04 44
100 5.61 76
100 3.37 74

62 3.3 46
0 7.46 88

100 2.02 100
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If order � = 1.

ˆout = Cin × exp

(
1

1 +
(

t1
T1

)ˇ
× (−k0) × exp

( −E

RT2

)
× t2

)
(2)

If order � /= 1

ˆout =
(

C1−�
in + (� − 1) × 1

1 +
(

t1
T1

)ˇ
× k0 × exp

( −E

RT2

)
× t2

) 1
1−�

(3)

In each reaction, there are five parameters to be estimated: �,
0, E, ˇ, T1. And there are 25 unknown parameters in five reactions.

Generally, such parameter estimation problems can be cast
s non-linear optimization problems by minimizing the errors
etween the estimated outputs and the real outputs. Here, the

bjective function is defined as the sum of squared deviations of
he removal fractions predicted by the models from the industrially

easured values:

f =
ns∑

p=1

(
yp − ŷp

yp

)2

yp = 1 − Coutp

Cinp
, ŷp = 1 − Ĉoutp

Cinp

(4)

here ns is the sample number, yp is the real removal fraction of
he Pth group, ŷp is the model predicted removal fraction, Cinp is the
oncentration of the impurity in the feedstock of the Pth group, Coutp

nd Ĉoutp is the real and predicted concentration of impurity of the
roduct of the Pth group. By minimizing the objective function Eq.
4), all the 25 kinetic parameters can be determined.

CR105.S =
(

C−1.3
R101.S + 1.3 × 1

1 +
(

t
46

CR105.N =
(

C−0.63
R101.N + 0.63 ×

1 +
(

CR105.C =
(

C−0.88
R101.C + 0.88 ×

1 +
(

CR105.Ni =
(

C−0.4
R101.Ni

+ 0.4 × 1

1 +
(

CR105.V =
(

C−0.32
R101.V + 0.32 ×

1 +
(

.2. Parameter estimation

Due to the superior performance of the DNA-GA, it is applied to
he parameter estimation problem (4), where traditional methods
ng Journal 150 (2009) 527–535 533

failed because of the non-linearity and other complicated charac-
teristics of chemical processes. 18 Groups of operation data were
recorded after the unit running for 503 days. Each group include the
average temperature in five reactors, the concentration of impuri-
ties at entry, the concentration of impurities at exit, the feedstock
density and the feedstock mass flowrate. And t2 in Eqs. (2) and (3)
is computed as follows:

t2 = 710
feedstock density

feedstock mass flowrate
(5)

where 710 is the reactor volume. The maximum evolution number
of the DNA-GA is set to be 300, the population size is 150, and the
four operator probabilities remain the same as in Section 3. The
kinetic parameters of the hydrogenation model estimated by the
DNA-GA are listed in Table 6.

Based on the above parameters and the operation data from S-
RHT, the kinetic hydrogenation model for S-RHT is described as
follows:

Desulphurization:

× 100 × exp
( −27983

8.3145T2

)
t2

)− 1
1.3

(6)

Denitrification:

0.1
× 1.8 × exp

( −34663
8.3145T2

)
t2

)− 1
0.63

(7)

Decarbonization:

9.6
× 48.5 × exp

( −40289
8.3145T2

)
t2

)− 1
0.88

(8)

Denickel:

× 8.9 × exp
( −25685

8.3145T2

)
t2

)− 1
0.4

(9)

Devanadium:

9.7
× 11.4 × exp

( −24741
8.3145T2

)
t2

)− 1
0.32

(10)

In order to verify the validity of the obtained models, another
four group data gathered from S-RHT are selected as test data. The
predicted concentration at exit and the predicted removal fraction
of five reactions according to each test group are shown in Table 7.
The relative errors according to each test group are also given in
Table 7. Here, relative error = yreali−ypredictedi

yreali
, where, yreali is the real

removal fraction in ith group, and ypredictedi is the predicted removal
fraction in ith group.

From Table 7, we can find that:

(1) For the kinetic desulphurization model, the maximum relative
error is 3.9%, the minimum relative error is 0.15%, and the aver-
age relative error is 1.73%.

(2) For the kinetic denitrification model, the maximum relative
error is 2.75%, the minimum relative error is 1.21%, and the
average relative error is 2.13%.

(3) For the kinetic decarbonization model, the maximum relative

error is 4.4%, the minimum relative error is 0.05%, and the aver-
age relative error is 2.81%.

(4) For the kinetic denickel model, the maximum relative error is
6.74%, the minimum relative error is 0.93%, and the average
relative error is 3.72%.
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Table 6
Estimated kinetic model parameters.

Reaction � (dimensionless) k0 (dimensionless) E (J mol−1) ˇ (dimensionless) T1/day

Desulphurization 2.3 100 27983 7.6 466
Denitrification 1.63 1.8 34663 0.1 413
Decarbonization 1.88 48.5 40289 9.6 489
Denickel 1.4 8.9 25685 5 525
Devanadium 1.32 11.4 24741 9.7 491

Table 7
Predicted results of the obtained kinetic models.

Test group Predicted concentration at exit, �g g−1 Predicted removal fraction (%) Relative error of fraction

Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon Sulphur Nitrogen Carbon

19 0.3575 1084 5.0489 0.8345 0.5117 0.4946 −0.0070 −0.0243 −0.0381
20 0.3431 999.6 5.1968 0.9014 0.5377 0.5882 −0.0218 −0.0215 −0.0440
21 0.3677 1221 5.2138 0.8782 0.6432 0.6109 0.0390 0.0121 −0.0005
22 0.3630 853.6 4.6367 0.8487 0.6936 0.5893 0.0015 0.0275 0.0301

Nickel Vanadium Nickel Vanadium Nickel Vanadium

19 6.7639 8.074 0.6090
20 6.3955 10.1470 0.6370
21 7.2876 11.7793 0.6224
22 5.6681 6.8804 0.6479

Table 8
Comparison of estimated kinetic models obtained by different methods.

Reaction This paper [16–17] [26]

Desulphurization 0.0020 0.0028 0.0034
Denitrification 0.0020 0.0153 0.02
D
D
D

(

i
w
t
m

r
r
i
m
p

5

t
p
o
i
r
m
g
a
o
i
e
a
p

ecarbonization 0.0043 0.0232 0.0513
enickel 0.0074 0.0202
enickel 0.0016 0.0021

5) For the kinetic devanadium model, the maximum relative error
is 2.67%, the minimum relative error is 0.42%, and the average
relative error is 1.8%.

The average relative error of the five models is 2.44%. Consider-
ng the data we used are gathered from S-RHT, the industrial unit

orking conditions are very complicated and some occasional fac-
ors are unpredictable. In view of this, the precision of the estimated

odels is acceptable.
Moreover, we use the same test data to examine the previously

eported models obtained by other methods [16,17,26]. For every
eaction, the sum of square relative errors of each model is listed
n Table 8. From this table, we can see that the prediction of the

odel established by the DNA-GA is in better agreement with the
ractical operating data than the other models.

. Conclusions

Kinetic modeling is an important issue for the optimization of
he chemical process and mathematical modeling of these complex
rocess leads to non-linear parameter estimation problems which
ften contain more than one minimum. In this work, a DNA-GA
s proposed to determine 25 kinetic parameters of hydrogenation
eactions for its strong global search ability. The DNA encoding
ethod is adopted to represent the potential solutions and new

enetic operators are designed to enhance the global searching
bility of the DNA-GA. The implementation of two operators, IA

perator and MM operator, was shown to be powerful in seek-
ng the global optimum of the complex function. To testify the
ffectiveness of the DNA-GA, its performance has been statistically
nalyzed using a number of typical benchmark functions. Com-
ared with RNA-GA and GA, the DNA-GA possesses strong global
0.7387 −0.0279 −0.0042
0.8114 −0.0093 0.0267
0.8303 0.0674 0.0201
0.7952 −0.0442 −0.0210

searching ability to overcome different degree of fraudulence with
fast convergence speed, and its improvement of performance in
high-dimensional problems is obvious. The kinetic models obtained
by the DNA-GA are compared with the previous models based on
the operating data gathered from an industrial unit, and the pre-
dictions of the estimated models are in good agreement with the
practical operating data. Nevertheless, the proposed operators only
can be adopted in the algorithms where individuals are represented
with four bases by far. Hence, a further study to employ the pro-
posed operators over other encoding type chromosomes will be
valuable.
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